MA 214
2/21/2024
Quiz 3
Version A

Full name: \qquad

Student ID number: 9 \qquad

1. (5 points) The ODE $(2 t \ln (t)-t) y^{\prime \prime}+(2 \ln (t)+1) y^{\prime}-\frac{4}{t} y=0$ is solved by the functions $y_{1}=t^{2}$ and $y_{2}=\ln (t)$. Use the Wronskian to determine whether these two solutions form a fundamental solution set. Be sure to show your work and state your conclusion.
The Wronskian: $W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}t^{2} & \ln (t) \\ 2 t & \frac{1}{t}\end{array}\right|$

$$
=t^{2} \cdot \frac{1}{t}-2 t \ln (t)=t-2 t \ln (t)
$$

Note: $t-2 t \ln (t)=t(1-2 \ln (t))=0 \Rightarrow \ln (t)=\frac{1}{2} \Rightarrow t=e^{1 / 2}$ So, the Wronskian is re >0 at $t=e^{1 / 2}$. Since $W=0$ at one point then it is zero at every point $b / c \quad W\left(y_{1}, y_{2}\right)(t)=W\left(y_{1}, y_{2}\right)\left(t_{0}\right) e^{-\int_{t_{0}}^{t} p(x) d x}$ Thus, $W\left(y_{1}, y_{2}\right)(t)=0$ for all t, i.e., y_{1} and y_{2} do not form a fundamental solution set.
2. (6 points) Find the general solution to the following ODE.

$$
y^{\prime \prime}+9 y^{\prime}-10 y=0
$$

$$
\begin{aligned}
& \text { Let } y=e^{r t} \Rightarrow y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t} \Rightarrow r^{2} e^{r t}+9 r e^{r t}-10 e^{r t}=0 \\
& \Rightarrow e^{r t}\left(r^{2}+9 r-10\right)=0 \Rightarrow r^{2}+9 r-10=0 \\
& \Rightarrow(r+10)(r-1)=0 \Rightarrow r_{1}=-10, r_{2}=1 \text {. Then, a general } \\
& \text { solution: } y(t)=C_{1} e^{-10 t}+c_{2} e^{t}
\end{aligned}
$$

3. (9 points) The function $y_{1}=\frac{1}{t}$ is a solution to the ODE

$$
2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0, \quad t>0 \quad(\star)
$$

Use Reduction of Order to find the general solution to the ODE.
$y_{1}=\frac{1}{t}$ is given to be a solution to $(*)$. Let $y_{2}(t)=v(t) y_{1}(t)$

$$
\begin{aligned}
& \Rightarrow y_{2}(t)=v \cdot \frac{1}{t} \Rightarrow y_{2}^{\prime}=v^{\prime} \cdot \frac{1}{t}+v \cdot\left(-\frac{1}{t^{2}}\right) \\
& \Rightarrow y_{2}^{\prime \prime}=v^{\prime \prime} \cdot \frac{1}{t}+v^{\prime} \cdot\left(-\frac{1}{t^{2}}\right)+v^{\prime}\left(-\frac{1}{t^{2}}\right)+2 v \cdot \frac{1}{t^{3}} \\
& \quad=v^{\prime \prime} \cdot \frac{1}{t}-2 v^{\prime} \cdot \frac{1}{t^{2}}+2 v \cdot \frac{1}{t^{3}}
\end{aligned}
$$

Substituting $y_{2}, y_{2}^{\prime}, y_{2}^{\prime \prime}$ into $(*)$:

$$
2 t^{2}\left(v^{\prime \prime} \cdot \frac{1}{t}-2 v^{\prime} \cdot \frac{1}{t^{2}}+2 v \cdot \frac{1}{t^{3}}\right)+t\left(v^{\prime} \cdot \frac{1}{t}-v \cdot \frac{1}{t^{2}}\right)
$$

$-3 v \cdot \frac{1}{t}=0$. Expanding this

$$
2 v^{\prime \prime} t-4 v^{\prime}+4 v \cdot \frac{1}{1}+v^{2}+v \cdot \frac{1}{t}-3 v \cdot \frac{1}{t}=0
$$

$\Rightarrow 2 v^{\prime \prime} t-3 v^{\prime}=0$. Reduction of order: Let $v^{\prime}=w$.

$$
\begin{aligned}
& \Rightarrow 2 w^{\prime} t-3 w=0 \Rightarrow w^{\prime}=\frac{3}{2} \cdot \frac{1}{t} \Rightarrow \frac{d w}{d t}=\frac{3}{2} \cdot \frac{1}{t} \\
& \Rightarrow \int \frac{d w}{w}=\int \frac{3}{2} \cdot \frac{d t}{t} \Rightarrow \ln w=\frac{3}{2} \ln t+A=\ln t^{3 / 2}+A \\
& \Rightarrow w=e^{A} t^{3 / 2}=A t^{3 / 2}=v^{\prime} \Rightarrow v=\int w d t=A \int t^{3 / 2}=A t^{5 / 2}+B
\end{aligned}
$$

Set $A=1, B=0 \Rightarrow v=t^{5 / 2} \Rightarrow y_{2}(t)=t^{5 / 2} t^{-1}=t^{3 / 2}$

Thus, The general solution:

$$
y(t)=C_{1} t^{-1}+C_{2} t^{3 / 2}
$$

